Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2,4,4-Tetrabromo-1,1,3,3-tetramethylcyclodiborazane

Gad Fuks, ${ }^{\text {a }}$ Nathalie Saffon, ${ }^{\text {b }}$ Didier Bourissou ${ }^{\text {a }}$ and Guy Bertrand ${ }^{\text {c }}$

[^0]Received 15 October 2007; accepted 22 October 2007
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{B})=0.005 \AA$; R factor $=0.032 ; w R$ factor $=0.085$; data-to-parameter ratio $=22.6$.

The title compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2}$, contains an almost square four-membered ring that results from the head-to-tail dimerization of the dimethylaminodibromoborane. The dimer has almost $m m m$ symmetry and does have $2 / m$ crystallographic symmetry. The crystal structure involves $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.

Related literature

For related structures featuring an aminodibromoborane skeleton, see: Abu Ali et al. (2001); Klebe et al. (1984); Nie et al. (2005); Nöth et al. (1983). Aminohalogenoboranes are direct precursors for diboranes, see: Ishimaya et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2}$
$V=583.33(12) \AA^{3}$
$M_{r}=429.42$
Monoclinic, C2/m
$Z=2$
$a=11.1089$ (13) £
$b=8.7842$ (10) \AA
Mo $K \alpha$ radiation
$\mu=13.75 \mathrm{~mm}^{-1}$
$c=6.9077$ (8) A
$\beta=120.074$ (2) ${ }^{\circ}$
$T=173$ (2) K
$0.08 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2006)
$T_{\text {min }}=0.210, T_{\text {max }}=0.662$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad 34$ parameters
$w R\left(F^{2}\right)=0.085$
$S=1.04$
769 reflections

2689 measured reflections 769 independent reflections 683 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$
-atom parameters constrained
$\Delta \rho_{\text {max }}=0.74 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.42 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	3.02	$3.982(4)$	167
Symmetry code: (iii) $-x+\frac{5}{2},-y+\frac{1}{2},-z+1$.				

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2006); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the CNRS, UPS and Rhodia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2057).

References

Abu Ali, H., Goldberg, I. \& Srebnik, M. (2001). Acta Cryst. C57, 770-771.
Bruker (2006). APEX2, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Ishimaya, T. \& Murata, M. (2002). Org. Synth., 77, 176-177.
Klebe, G. \& Tranqui, D. (1984). Inorg. Chim. Acta, 81, 1-5.
Nie, Y., Pritzkow, H. \& Siebert, W. (2005). Z. Naturforsch Teil B. 60, 10161019.

Nöth, H. \& Weber, S. (1983). Z. Naturforsch Teil B. 38, 1460-1465.
Sheldrick, G. M. (1997). SHELXL97. and SHELXS97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4476 [doi:10.1107/S1600536807052385]

2,2,4,4-Tetrabromo-1,1,3,3-tetramethylcyclodiborazane

G. Fuks, N. Saffon, D. Bourissou and G. Bertrand

Comment

The structure of the title compound is shown in Fig. 1. Head-to-tail dimerization of dimethylaminodibromoborane results in a NBNB four-membered ring only slightly deviating from square geometry. The shortest intermolecular contact between hydrogen and bromine from adjacent molecules is of $3.022 \AA$.

Experimental

The title compound was prepared by substituent redistribution from tris(dimethylamino)borane and tribromoborane. Suitable crystals were obtained upon allowing the crude reaction mixture to stand at 293 K .

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of dimethylaminodibromoborane dimer, with the atom-labeling scheme. The B and Br atoms lie in the crystallographic mirror plane and the N atoms lie on the twofold axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms omitted for clarity. Symmetry codes: (i) $-x+2, y,-z+1$; (ii) $-x+2,-y,-z+1$; (iii) x, $-y, z$.

2,2,4,4-Tetrabromo-1,1,3,3-tetramethylcyclodiborazane

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{Br}_{4} \mathrm{~N}_{2}$
$F_{000}=400$
$M_{r}=429.42$
Monoclinic, $C 2 / m$
Hall symbol: -C 2 y
$a=11.1089$ (13) \AA
$D_{\mathrm{x}}=2.445 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 340 K
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1609 reflections
$b=8.7842(10) \AA$
$\theta=3.1-28.2^{\circ}$

supplementary materials

$$
\begin{aligned}
& c=6.9077(8) \AA \\
& \beta=120.074(2)^{\circ} \\
& V=583.33(12) \AA^{3} \\
& Z=2
\end{aligned}
$$

$\mu=13.75 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, colourless
$0.08 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer

Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173$ (2) K
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.210, T_{\text {max }}=0.662$
2689 measured reflections

769 independent reflections
683 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=28.2^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-14 \rightarrow 14$
$k=-10 \rightarrow 11$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.085$
$S=1.04$
769 reflections
34 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0389 P)^{2}+1.911 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.74 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.42 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Experimental. The crystal was made of many different layers so it was twinned. To solve this problem, we had to cut a very small plate (we couldn't even see it with the camera). This is why we measured a crystal that we were unable to index correctly for the absorption correction.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Br1	$1.17185(5)$	0.0000	$0.31107(9)$	$0.03261(19)$
Br2	$1.28193(6)$	0.0000	$0.83699(9)$	$0.0429(2)$
N1	1.0000	$0.1319(4)$	0.5000	$0.0230(8)$
B1	$1.1096(5)$	0.0000	$0.5364(8)$	$0.0205(9)$
C1	$1.0398(4)$	$0.2347(5)$	$0.6963(9)$	$0.0449(10)$
H1A	1.1199	0.2969	0.7227	0.067^{*}
H1C	1.0644	0.1731	0.8293	0.067^{*}
H1B	0.9613	0.3012	0.6651	0.067^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0359(3)$	$0.0390(3)$	$0.0348(3)$	0.000	$0.0266(2)$	0.000
Br 2	$0.0411(3)$	$0.0391(4)$	$0.0231(3)$	0.000	$-0.0028(2)$	0.000
N 1	$0.0233(18)$	$0.0197(18)$	$0.0300(19)$	0.000	$0.0164(16)$	0.000
B 1	$0.018(2)$	$0.023(2)$	$0.022(2)$	0.000	$0.0107(18)$	0.000
C 1	$0.042(2)$	$0.037(2)$	$0.069(3)$	$-0.0175(17)$	$0.037(2)$	$-0.032(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

Br1—B1	1.995 (5)	N1-B1	1.606 (4)
Br2-B1	1.998 (5)	$\mathrm{B} 1-\mathrm{N} 1^{\text {ii }}$	1.606 (4)
N1-C1	1.499 (4)	C1-H1A	0.9800
$\mathrm{N} 1-\mathrm{Cl}{ }^{\text {i }}$	1.499 (4)	C1-H1C	0.9800
N1-B1 ${ }^{\text {ii }}$	1.606 (4)	C1—H1B	0.9800
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 1^{\text {i }}$	106.0 (5)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{B} 1-\mathrm{Br} 2$	114.8 (2)
C1-N1-B1 $1^{\text {ii }}$	115.7 (2)	$\mathrm{N} 1-\mathrm{B} 1-\mathrm{Br} 2$	114.8 (2)
C1 ${ }^{\text {i }}-\mathrm{N} 1-\mathrm{B} 1^{\text {ii }}$	115.8 (3)	$\mathrm{Br} 1-\mathrm{B} 1-\mathrm{Br} 2$	106.5 (2)
C1-N1-B1	115.8 (3)	N1-C1-H1A	109.5
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{B} 1$	115.7 (2)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
B1i ${ }^{\text {ii }}$ - $11-\mathrm{B} 1$	87.7 (3)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H1C}$	109.5
N1 ${ }^{\text {ii }}$ - $\mathrm{B} 1-\mathrm{N} 1$	92.3 (3)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{B} 1-\mathrm{Br} 1$	114.2 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
N1—B1-Br1	114.2 (2)	$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

Symmetry codes: (i) $-x+2, y,-z+1$; (ii) $-x+2,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{iii}}$	0.98	3.02	$3.982(4)$	167

Symmetry codes: (iii) $-x+5 / 2,-y+1 / 2,-z+1$.

supplementary materials

Fig. 1

[^0]: ${ }^{\text {a }}$ Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, 118 route de Narbonne, 31062 Toulouse Cedex 9, France, ${ }^{\text {b }}$ Université Paul Sabatier, Structure Fédérative Toulousaine en Chimie Moléculaire (FR 2599), 118 route de Narbonne, 31062 Toulouse Cedex 9, France, and ${ }^{\text {c }}$ UCR-CNRS Joint Research Chemistry Laboratory (UMI 2957), Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
 Correspondence e-mail: dbouriss@chimie.ups-tlse.fr

